Surrounded by innovation

By: Meredith Burke and Catilin Stockwell

Over the past few decades, technological advances have completely revolutionized our society. It has influenced the way we live our lives, from the way we watch TV, to the way we conduct our scientific research. However, the aquaculture industry has fallen by the wayside. Big data, collected and distributed to our hands in the form of apps, have begun to dominate our world, so why is this not the case in one of the fastest growing industries in the world?

DSCN1889
Farming fish with the Atlantic Canada in the background

Atlantic Canada has recently emerged as a global leader in ocean technology, as well as playing host to one of the largest aquaculture companies in the world, Cooke Aquaculture. We have the unique opportunity of being surrounded by innovation. We are able to work side by side with the developers, as well as the consumers, to field test new technologies, and optimize their performance prior to commercialization.

However, aquaculture is still a relatively young industry, often operating in remote places, so introducing the use of technology has been difficult. Through research projects, we have been able to merge two key industry partners: ocean technology via InnovaSea, and salmon aquaculture, through Cooke, in order to improve management practices.

This slideshow requires JavaScript.

Meredith’s research focuses primarily on using real-time sensors to study water quality parameters, like oxygen and temperature, to understand how they vary through a farm, and what may influence these variations. At the same time, Caitlin uses acoustic telemetry to track fish movement in order to understand fish behaviour and improve welfare management. These two projects together allow us to provide a more holistic view of fish farming to create a more sustainable industry.

This slideshow requires JavaScript.

We hope that our work will help inform other aquaculture industries throughout the world, to become more innovative, improve farming practices, and ultimately create happier and healthier fish, with the ability to feed a growing population.

Toward the eco-intensification of Rainbow Trout Farming in Trentino (Northern Italy)

By: Edouard Royer with contributions from Andrea Forchino

I am Edouard, a French engineer working within GAIN for Università Ca’Foscari (UNIVE) in Venice, Italy. In my previous life, I was busy launching satellites. Now I am discovering the fascinating world of aquaculture and finding out that dynamic systems and data assimilation are becoming key tools in managing aquafarms. Within the GAIN project I’m trying to set up a model of a trout farm based on data provided from Troticoltura Leonardi located in Preore (Trentino, Italy).

OLYMPUS DIGITAL CAMERA
Rainbow trout farm in Trentino

Rainbow trout farming is the main fish farming activity in northern Italy, allowed by the presence of many watercourses coming from the Alpes Mountains. The last Italian census of aquaculture (PO FEAMP 2014-2020) counted 310 freshwater farming companies, most of them producing rainbow trout (Oncorhynchus mykiss). These farms are mainly located in Northern Italy, particularly in 3 different regions: Veneto (70 farms), Friuli Venezia Giulia (68) and Trentino Alto Adige (58).

If on the one hand trout farming is a traditional productive activity in Italy, on the other hand the new generation of farmers are looking forward to exploring the application of new technologies and collaboration leading to the optimization of management practices. This is the case of Dr. Matteo Leonardi who together with his company, Troticoltura Leonardi S.r.l., is involved in GAIN as an associated partner. But, how can a traditional productive activity such as trout farming be eco-intensified? This was the question risen by GAIN and now, at the beginning of the second year of the project, everything is ready to answer that question!

Troticoltura Leonardi trout farm in Preore (TN)
Troticoltura Leonardi trout farm in Preore (TN)

On July 16th 2019, with my colleagues Roberto Pastres and Andrea Forchino we met Filippo Faccenda (Fondazione Edmund Mach – FEM) and Mateo Leonardi at Preore in Troticoltura Leonardi aquafarm.

It was first an opportunity to monitor the sensors that were immersed at the beginning of July: water quality sensors provided and managed by FEM, and the daily biomass system. Second, it was the occasion to acquire the first data in order to accomplish an in-situ validation of the acquisition systems. Concerning water quality sensor, it was installed in one of the six raceways of the farm to continuously record data on ammonia, nitrates, redox potential, pH, dissolved oxygen, and temperature. All sensors are working well and the activities of the next weeks will be focused on the periodic transfer from the site to the IBM Castor platform, both from the technical and organizational point of view. These data will be crucial in trying to model the relationship between biomass growth, oxygen rate, temperature and feeding strategy.

Dr Filippo Faccenda (FEM) and Dr. Edouard Royer (UNIVE) download the data recorded by the water quality probe
Dr. Filippo Faccenda (FEM) and Dr. Edouard Royer (UNIVE) download the data recorded by the water quality probe.

But the meeting was also a good way to share again the objectives of the GAIN project related to Troticoltura Leonardi: Matteo Leonardi explained again his farming process and the concerns related to the lack of forecast in the frame of oxygen concentration (and its regulation) and its influence on feeding assimilation. Both inner products (oxygen and feeding) are for the farmer two important costs, as well as two central parameters for the welfare of the rainbow trout.

It was then the opportunity to confirm again the pertinence of the objectives of the GAIN project regarding farmers concerns and the challenges they face everyday in growing trout in raceways with water that continuously fluctuates in quality (due to its origin in natural water courses).

The GAIN work will now consist in modelling the biomass growth, the oxygen concentration variation due to animals behavior, and the evolution of temperature, seeking to build reliable forecasts that can support the farmer in his day-to-day decisions, reducing the costs and increasing welfare of the fishes. In one word, optimizing the process!