Surrounded by innovation

By: Meredith Burke and Catilin Stockwell

Over the past few decades, technological advances have completely revolutionized our society. It has influenced the way we live our lives, from the way we watch TV, to the way we conduct our scientific research. However, the aquaculture industry has fallen by the wayside. Big data, collected and distributed to our hands in the form of apps, have begun to dominate our world, so why is this not the case in one of the fastest growing industries in the world?

DSCN1889
Farming fish with the Atlantic Canada in the background

Atlantic Canada has recently emerged as a global leader in ocean technology, as well as playing host to one of the largest aquaculture companies in the world, Cooke Aquaculture. We have the unique opportunity of being surrounded by innovation. We are able to work side by side with the developers, as well as the consumers, to field test new technologies, and optimize their performance prior to commercialization.

However, aquaculture is still a relatively young industry, often operating in remote places, so introducing the use of technology has been difficult. Through research projects, we have been able to merge two key industry partners: ocean technology via InnovaSea, and salmon aquaculture, through Cooke, in order to improve management practices.

This slideshow requires JavaScript.

Meredith’s research focuses primarily on using real-time sensors to study water quality parameters, like oxygen and temperature, to understand how they vary through a farm, and what may influence these variations. At the same time, Caitlin uses acoustic telemetry to track fish movement in order to understand fish behaviour and improve welfare management. These two projects together allow us to provide a more holistic view of fish farming to create a more sustainable industry.

This slideshow requires JavaScript.

We hope that our work will help inform other aquaculture industries throughout the world, to become more innovative, improve farming practices, and ultimately create happier and healthier fish, with the ability to feed a growing population.

The Future of Aquaculture

By: Remigiusz Panicz

The Future of aquaculture’ was the overarching motif of the international conference held in Kudowa Zdrój, Poland between 25 and 27 September of 2019. Fish farmers, scientists and other stakeholders had a unique opportunity to participate in the science-grounded lectures and follow-up discussions both devoted to the aspects and problems of the aquaculture sector

Among these current and future concerns, are animal welfare, the diversification of aquaculture, certification models, climate change and diseases risk. GAIN’s partners Remigiusz Panicz, Jacek Sadowski and Piotr Eljasik, from ZUT introduced participants of the conference to the GAIN project, its objectives and provided its vision on common carp eco-intensification.

 

This slideshow requires JavaScript.

This species, whose culture has a long tradition in Poland, currently struggles due to numerous factors: water scarcity, unfavorable policy, and market uptake. The freshwater farmed fish sector seeks for viable solutions to keep carp farming on a profitable level.

During the conference an interesting voice was raised regarding precision aquaculture: a direction which is unavoidable in order to cope with the aforementioned factors. Aspects of macroalgae culture in Polish coastline waters was also presented and discussed: this interesting idea is developing into a new project being launched in Poland this year.

Numerous aspects of circular economy in the Polish aquaculture sector were also raised and discussed openly: energy efficiency, regulations, and management of by-products and waste streams, and pertinent questions related to carp meat supply throughout the whole year.

The eco-intensification and precision aquaculture work developed in GAIN, coordinated with the efforts of stakeholders, might bring solutions for the future of carp farming in Poland.

The day of a fish

By Caitlin Stockwell:

Have you ever wondered what the day of a fish looks like? Or what leads to their decision making? Well I have always been curious, and I turned that curiosity into a career path.

I am a PhD student at Dalhousie University studying fish behavior in aquaculture using acoustics. Now what does that actually mean? There are many ways to study fish behavior from putting tags into a fish and tracking an individual’s movement, to using sound to track an entire populations movement. I use both in my research to help understand different aspects of where fish swim and why.

 

This slideshow requires JavaScript.

To make a complicated technology simple, I use acoustics (sounds in the water) to send a sound signal up into the cage and, depending what type of sound is returned, will determine the amount of fish and their location in the cage. This information can be extremely useful to fish farmers as it can help them determine when to start and stop feeding, as well as how their fish respond to other environmental conditions (such as storms or harmful algae blooms).

This slideshow requires JavaScript.

The aim of studying fish movement is to help farmers better understand their fish and assist them in mitigating any stress that could impact the fish’s well-being. By providing this information, we can help make happier, healthier fish to help feed our growing population.