By the way, how much is the fish?*

By Cornelia Kreiss:

To produce a good seafood product according to ecological, welfare and human health aspects we also have to consider the economic side of the coin. The use of sustainable alternative feed, close monitoring of the production conditions or the valorisation of side-stream products is beneficial for a more sustainable production, but will also come at a cost. How high is this cost? Which production benefit or who (the consumer?) will compensate for these costs? What about the whole sector impact?

This slideshow requires JavaScript.

These are very important questions for farmers and the seafood industry in general, which we seek to answer within GAIN. In order to do this on farm-scale we use a so-called “typical farm approach” implemented by the agri benchmark network headed by the Thünen Institute in Germany. This is a micro-economic tool which allows to portray the typical production of a farmed species according to real costs, techniques and other inputs: all of it in great detail. In the end we can estimate, which market returns per kg fish should be achieved in order to stay (as) profitable (as before)!

Kreiss_Troutfarmer

Sustainable production methods themselves already benefit the farmer, resulting in better quality fish that needs less feed to grow to the same size, or achieving higher water quality which might also allow for higher stocking densities. However, such benefits do not always outweigh the full costs that adaptations towards sustainable production might involve. As long as follow-up costs of environmental impacts are not part of the market price (which is admittedly not an easy task to determine!), price differences are at the expense of sustainable products and need a transparent justification.

Originating from Germany, where public awareness and willingness to pay for more sustainable seafood products is higher than in other countries, I am convinced that a good market transparency is the way forward and I am excited to be part of this aim in combination with more sustainable seafood production within GAIN.

*The fish bought by the electro trashers band “Scooter” in the 1990’s and being the name giver for their song “How much is the fish”, cost 3.80 Deutsche Mark and supposedly lived for at least 18 years, which seems to be a quite good deal!

The Future of Aquaculture

By: Remigiusz Panicz

The Future of aquaculture’ was the overarching motif of the international conference held in Kudowa Zdrój, Poland between 25 and 27 September of 2019. Fish farmers, scientists and other stakeholders had a unique opportunity to participate in the science-grounded lectures and follow-up discussions both devoted to the aspects and problems of the aquaculture sector

Among these current and future concerns, are animal welfare, the diversification of aquaculture, certification models, climate change and diseases risk. GAIN’s partners Remigiusz Panicz, Jacek Sadowski and Piotr Eljasik, from ZUT introduced participants of the conference to the GAIN project, its objectives and provided its vision on common carp eco-intensification.

 

This slideshow requires JavaScript.

This species, whose culture has a long tradition in Poland, currently struggles due to numerous factors: water scarcity, unfavorable policy, and market uptake. The freshwater farmed fish sector seeks for viable solutions to keep carp farming on a profitable level.

During the conference an interesting voice was raised regarding precision aquaculture: a direction which is unavoidable in order to cope with the aforementioned factors. Aspects of macroalgae culture in Polish coastline waters was also presented and discussed: this interesting idea is developing into a new project being launched in Poland this year.

Numerous aspects of circular economy in the Polish aquaculture sector were also raised and discussed openly: energy efficiency, regulations, and management of by-products and waste streams, and pertinent questions related to carp meat supply throughout the whole year.

The eco-intensification and precision aquaculture work developed in GAIN, coordinated with the efforts of stakeholders, might bring solutions for the future of carp farming in Poland.

The day of a fish

By Caitlin Stockwell:

Have you ever wondered what the day of a fish looks like? Or what leads to their decision making? Well I have always been curious, and I turned that curiosity into a career path.

I am a PhD student at Dalhousie University studying fish behavior in aquaculture using acoustics. Now what does that actually mean? There are many ways to study fish behavior from putting tags into a fish and tracking an individual’s movement, to using sound to track an entire populations movement. I use both in my research to help understand different aspects of where fish swim and why.

 

This slideshow requires JavaScript.

To make a complicated technology simple, I use acoustics (sounds in the water) to send a sound signal up into the cage and, depending what type of sound is returned, will determine the amount of fish and their location in the cage. This information can be extremely useful to fish farmers as it can help them determine when to start and stop feeding, as well as how their fish respond to other environmental conditions (such as storms or harmful algae blooms).

This slideshow requires JavaScript.

The aim of studying fish movement is to help farmers better understand their fish and assist them in mitigating any stress that could impact the fish’s well-being. By providing this information, we can help make happier, healthier fish to help feed our growing population.

VALORIZATION OF AQUACULTURE BY-PRODUCTS: BEYOND OF FISH MEAL PRODUCTION

By: Xosé Antón Vázquez Álvarez

Industrially implemented in northern Europe (mainly Iceland and Scandinavia) a century ago to manage herring fishery wastes, the production of fish meal and fish oils were – and still are – traditional ways of valorizing by-products generated by the fishing industry. Extensible also to the co-products produced in the de-heading, gutting and filleting of the heads, viscera and frames of farmed fish (salmon, trout or sea bass), fish meal plays a fundamental role in the productive system of the aquaculture industry as final receptors (managers) of their wastes, and producers of the aforementioned compounds. The market value of fish meal is a function of its level of protein, and fish oils are more valued the higher the concentration of omega-3 fatty acids, especially docosahexaenoic acid (DHA). Both products are essential ingredients in aquaculture feed formulations.

However, other alternatives and processes of valorization can be applied to these substrates: the production of fish protein hydrolysates (FPHs) and marine peptones generated from all wastes, the recovery of collagen and gelatin from the skins or hydroxyapatites of the fish bones. Within the framework of the GAIN project, the Marine Research Institute (IIM-CSIC, Vigo, Spain) is developing and optimizing these alternatives, initially on a lab scale, and scaling some of them in the pilot plant available in the IIM-CSIC. The raw materials studied are heads, trimmings, frames and viscera from rainbow trout, salmon, turbot and carp.

This slideshow requires JavaScript.

In the first case, the production of FPHs consists in the application of proteases, mainly exogenous, to the mixing of the crushed wastes with water working under optimal experimental conditions (pH, T, enzyme concentration, etc.) for the adequate enzymatic hydrolysis of the substrates. The solid hydrolysates generated after the separation of the bones and oils present in the initial substrates and the drying process are a highly digestible protein-rich material, with a varied set of peptides of different sizes, in some cases with certain bioactive properties and better nutritional characteristics than the fish meal used as ingredient in aquaculture feed. It is in this direction where the application of the FPHs produced in the IIM-CSIC will be focused: the preparation by SPAROS of new formulations for aquaculture feed based, among other ingredients, on FPH’s. Additionally, hydrolysates from individuals of blue whiting discarded by European fishing fleets and which must be landed to the ports following the new EU fishing policy (Landing Obligation) will also be evaluated in salmonids feed.

This slideshow requires JavaScript.

The second of the examples consists in the production of marine peptones from the FPHs after stages of autoclaving and centrifugation. These fluids rich in protein material should be a source of organic nitrogen of great potential in the formulation of nutritive media for the cultivation of bacteria with important technological applications (probiotics, dairy starters, producers of bacteriocins and lactic acid, etc.). On the other hand, collagen and gelatins that can be recovered from fish skins, combining different chemical, enzymatic and thermal purification/extraction steps, could be biomaterials of interest in pharmacological, nutraceutical and food sectors. Finally, thermally processed clean bones of muscular debris, should have a composition rich in calcium phosphates with possibilities of application as a food supplement, incorporated into fertilizers or as bioapatites for bone regeneration.

We hope that the processes that will be developed within GAIN will lead to other alternatives, economically more profitable, for the management of aquaculture by-products beyond the well-established production of fish meal.