The Power of Small

By Shawn Robinson

In the biological world, the rapid advances in big data genetic technologies have allowed us unprecedented insights into how organisms function in and adapt to their ever-changing ecosystems. We are regularly unraveling the DNA code for different species in our quest to answer questions related to disease prevention, food production, industrial bio-products and general organism health.

We can now look at the very essence of our biology and see what genes are being turned off and on in relation to specific environmental stressors and even predict the potential for certain disease risks in the future for humans. The social and legal implications of this level of insight are still being grappled with, inside and outside of courtrooms.

One of the dramatic offshoots of the genetic technology has been the rebirth of the science of microbiology. In the past, up to 99% of the bacteria were not identifiable with classic taxonomic methods such as shape definition, ability to be stained, or the ability to digest sugars—now bacteria are regularly being identified through their DNA fingerprints. The field of microbial ecology has exploded with recent studies.

And it turns out that the bacteria all around us may be the “dark matter” that is holding all of our biological universe together—they’re involved in almost every aspect of life-processes with the various species. Perhaps this is not surprising as bacteria represented the first forms of life on this planet 3.5 billion years ago as stromatolites.

They have co-evolved with all the subsequent lifeforms from the start and can be found in every environment on earth. In medicine, studies such as the American Gut Project are showing direct linkages of bacteria to many of the current maladies that afflict the human condition such as: allergies, autism, autoimmune diseases, cancer, diabetes, gastric ulcers, inflammatory bowel diseases and obesity to name a few.

So it shouldn’t be surprising that bacteria also play a major role in aquatic ecosystem processes. Studies in Canada, United States, Norway, China, Australia and others are all using this genetic technology to help society understand the dynamics of underwater ecosystems and the health of the organisms within.

Do you have a gut feeling? The American Gut Project can help your explorations…

This technological approach with bacteria is also being applied within GAIN to help understand some of the ecological dynamics in aquaculture farms. Because bacteria grow in hours, microbes may match well with the time resolution of big data physical measurements and may become part of a method that can be used to fine-tune aquaculture activities.


Visit the GAIN project

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s